Acta Cryst. (1971). B27, 1837

The crystal structure of SnHAsO₄. By ALAN F. BERNDT, Chemistry Department, University of Missouri-St. Louis,

St. Louis, Missouri 63121, U.S.A.

(Received 9 March 1971)

Compound SnHAsO₄ is isostructural with SnHPO₄. The unit cell is monoclinic with $a=4.777\pm0.012$, $b=14.153\pm0.049$, $c=6.024\pm0.025$ Å, $\beta=100^{\circ}15'\pm30'$. Space group is $P2_1/c$, and the density calculated for Z=4 is 4.29 g.cm⁻³.

The reaction between solutions of $SnCl_2.2H_2O$ and $Na_2HAsO_4.7H_2O$ was studied at various values of *p*H and for Sn:As ratios between 1:2 and 3:2. Identical X-ray powder patterns were given by the crystalline precipitate in every case. Single crystals of this product were obtained by a diffusion-controlled reaction. A sample of $SnCl_2.2H_2O$ was placed in one leg of an 'H' shaped tube filled with water. Crystals of $Na_2HAsO_4.7H_2O$ were placed in the other leg, and the reaction mixture was maintained under an argon atmosphere. Numerous needle-like crystals were observed after several days.

A crystal approximately 0.01 mm in diameter and 0.2 mm in length was chosen for data collection and was mounted with the long dimension coincident with the axis of rotation. Multiple-film equi-inclination Weissenberg data were collected for layers hk0 through hk3 with Ni-filtered Cu Ka radiation ($\lambda = 1.54178$ Å). Comparison of the observed intensity data with that previously reported for SnHPO₄ (Berndt & Lamberg, 1971) clearly indicates the isomorphism between these two compounds. If the isomorphism is complete, then the product of the reaction

between $SnCl_2.2H_2O$ and $Na_2HAsO_4.7H_2O$ is $SnHAsO_4$. The unit cell of $SnHAsO_4$ is monoclinic with

> $a = 4.777 \pm 0.012 \text{ Å}$ $b = 14.153 \pm 0.049$ $c = 6.024 \pm 0.025$ $\beta = 100^{\circ}15' \pm 30'.$

Lattice constants were determined from a powder pattern indexed with the aid of the single-crystal data. Standard deviations in the lattice constants were estimated by a least-squares analysis. The density calculated for Z=4 is 4.29 g.cm⁻³, and the space group is $P2_1/c$.

Although $SnHPO_4$ and $SnHAsO_4$ are isostructural they do not have identical crystalline habits. Both compounds crystallize as needles; however, the needle axis of $SnHPO_4$ is [T03] (Berndt & Lamberg, 1971), whereas the needle axis of $SnHAsO_4$ is [001].

References

BERNDT, A. F. & LAMBERG, R. (1971). Acta Cryst. B27, 1092.

Acta Cryst. (1971). B27, 1837

Errata in International Tables for X-ray Crystallography. By A. D. MIGHELL, A. SANTORO and J. D. H. DONNAY, National Bureau of Standards, Washington D.C. 20234, U.S.A.

(Received 7 June 1971)

A number of misprints in International Tables for X-ray Crystallography (1969), Vol. I should be corrected.

The following misprints should be corrected in *International Tables for X-Ray Crystallography*, Vol. I (1969) reprinting: Table 5.1.2.1

Last item in condition 4(a)

For $|\mathbf{a} \cdot \mathbf{b} \leq \frac{1}{2}\mathbf{a} \cdot \mathbf{a}$ read $|\mathbf{a} \cdot \mathbf{b}| \leq \frac{1}{2}\mathbf{a} \cdot \mathbf{a}$

Conditions (5*c*), (5*d*), (5*e*)

For	$\mathbf{b} \cdot \mathbf{c} = \frac{1}{2} \mathbf{b} \cdot \mathbf{b}$	read	$ \mathbf{b} \cdot \mathbf{c} = \frac{1}{2} \mathbf{b} \cdot \mathbf{b}$
	$\mathbf{a} \cdot \mathbf{c} = \frac{1}{2} \mathbf{a} \cdot \mathbf{a}$		$ \mathbf{a} \cdot \mathbf{c} = \frac{1}{2}\mathbf{a} \cdot \mathbf{a}$
	$\mathbf{a} \cdot \mathbf{b} = \frac{1}{2} \mathbf{a} \cdot \mathbf{a}$		$ \mathbf{a} \cdot \mathbf{b} = \frac{1}{2}\mathbf{a} \cdot \mathbf{a}$

Table 5.1.2.2

Matrix of cell S, sixth entry

For
$$\begin{pmatrix} \mathbf{a} \cdot \mathbf{a} & \mathbf{b} \cdot \mathbf{b} & \mathbf{c} \cdot \mathbf{c} \\ \mathbf{b} \cdot \mathbf{b} & \mathbf{a} \cdot \mathbf{c} & \mathbf{a} \cdot \mathbf{b} \\ \hline 2 & & \end{pmatrix}$$
 read $\begin{pmatrix} \mathbf{a} \cdot \mathbf{a} & \mathbf{b} \cdot \mathbf{b} & \mathbf{c} \cdot \mathbf{c} \\ -\mathbf{b} \cdot \mathbf{b} & \mathbf{a} \cdot \mathbf{c} & \mathbf{a} \cdot \mathbf{b} \\ -\frac{\mathbf{b} \cdot \mathbf{b}}{2} & & & \end{pmatrix}$

Matrix of cell S, seventh entry

For
$$\begin{pmatrix} \mathbf{a} \cdot \mathbf{a} & \mathbf{b} \cdot \mathbf{b} & \mathbf{c} \cdot \mathbf{c} \\ \mathbf{b} \cdot \mathbf{c} & \mathbf{a} \cdot \mathbf{a} & \mathbf{a} \cdot \mathbf{b} \\ 2 \end{pmatrix}$$
 read $\begin{pmatrix} \mathbf{a} \cdot \mathbf{a} & \mathbf{b} \cdot \mathbf{b} & \mathbf{c} \cdot \mathbf{c} \\ \mathbf{b} \cdot \mathbf{c} & -\frac{\mathbf{a} \cdot \mathbf{a}}{2} & \mathbf{a} \cdot \mathbf{b} \\ 2 \end{pmatrix}$

ternational Matrix of cell S', sixth entry

For
$$\begin{pmatrix} \mathbf{a} \cdot \mathbf{a} & \mathbf{b} \cdot \mathbf{b} & \mathbf{c} \cdot \mathbf{c} \\ \mathbf{b} \cdot \mathbf{b} & (|\mathbf{a} \cdot \mathbf{c}| + |\mathbf{a} \cdot \mathbf{b}) & |\mathbf{a} \cdot \mathbf{b}| \end{pmatrix}$$

read $\begin{pmatrix} \mathbf{a} \cdot \mathbf{a} & \mathbf{b} \cdot \mathbf{b} & \mathbf{c} \cdot \mathbf{c} \\ \mathbf{b} \cdot \mathbf{b} & (|\mathbf{a} \cdot \mathbf{c}| + |\mathbf{a} \cdot \mathbf{b}|) & |\mathbf{a} \cdot \mathbf{b}| \end{pmatrix}$

Relations between scalars, last entry

For $2|\mathbf{a}\cdot\mathbf{c}| + 2|\mathbf{a}\cdot\mathbf{b}| < \mathbf{a}\cdot\mathbf{a}$ read $2|\mathbf{a}\cdot\mathbf{c}| + |\mathbf{a}\cdot\mathbf{b}| < \mathbf{a}\cdot\mathbf{a}$

Transformation matrix, last entry

For 100/010/111 read
$$\overline{100/010/111}$$

Table 5.1.3.1
Entry No. 8
For $c_1 = [a(\mathbf{a} \cdot \mathbf{a} - |\mathbf{b} \cdot \mathbf{c}|)]^{1/2}$ read $c_1 = [2(\mathbf{a} \cdot \mathbf{a} - |\mathbf{b} \cdot \mathbf{c}|)]^{1/2}$
Entry No. 15
For $c_1 = [2(c^2 - a^2)]^{1/2}$ read $c_1 = [2(2c^2 - a^2)]^{1/2}$
Entry No. 18